
1

Resolving and Using &&var&i Macro Variables

Arthur L. Carpenter
California Occidental Consultants

ABSTRACT
One of the most important aspects of the Macro SAS code is parsed, the macro variable can be
Language within the SAS System is its ability used to store snippets of code, variable names,®

to create code dynamically. This allows the constants, or even pieces of variable names.
developer to write code that will do a series of These macro variables can then be joined
operations without knowing exactly what those together to form new and exciting combinations.
operations will be at execution time. When macro variables contain the name of

This presentation will show how double other macro variables the resulting code will
ampersand macro variables are resolved and how often contain two (or more!!) ampersands. The
compound macro variables can be used to create following sections address the issue of making
dynamic code. Examples include using a list in a sense of macro variables with multiple
flat file to create a set of macro variables that ampersands.
control a series of events.

INTRODUCTION
Symbolic or macro variables are stored in including variables and data set names. A period
memory and are not associated with a data set as following the macro variable is assumed to be a
are data set variables whose values are stored in concatenation operator for that macro variable.
the Program Data Vector for a particular data Periods before a macro variable have no special
step. This means that macro variables can be significance. Double quotes are use when a
used across DATA and PROC steps in a SAS macro variable is to be resolved inside of a
program. quoted string.

Macro variables are identified in SAS code by
preceding the macro variable name with an
ampersand. Thus the macro variable DSN will WHERE SEX="&SEX";

be coded as &DSN.

TECHNICAL TIP: Professional SAS
programmers always refer to the ampersand as
“amper” when reading code, and only novice
programmers pronounce the full word.

The first step in understanding macro variable
behavior is to understand how macro variables
are resolved. Symbolic variable resolution refers
to the process of converting the contents of the
variable into symbols or code that can be
processed as if it was entered as part of the
program.

Because macro variables are resolved before the

another macro variable or pieces of names of

MACRO VARIABLE RESOLUTION
A macro variable may be appended to SAS code

%LET SEX=MALE;
DATA &SEX.ONLY;
SET CLASS.&SEX;

RUN;

This code will resolve to:

DATA MALEONLY;
SET CLASS.MALE;
WHERE SEX="MALE";
RUN;

It is not uncommon within the SAS Language
for some special characters, such as; single
quotes, periods and ampersands, to have dual
meanings. Dual use is indicated in the code by
placing two of the desired symbol. During the
resolution of the macro variables the two

2

symbols are resolved to one. For example a
double .. (period) is used when a . (period) is
desired in the text. infile 'pages.txt' missover;

%LET LIBREF=CLASS;
DATA &LIBREF..CLINICS;
SET SOMEDATA;
RUN;

This will resolve to:

DATA CLASS.CLINICS;
SET SOMEDATA;
RUN;

A similar result is achieved when more than one
macro variable is joined to form a single result.

%LET DSN=CLINICS;
%LET N=5;
%LET DSN5=FRED;

The macro variable &DSN&Nresolves to
CLINICS5 , &DSN5 resolves to FRED. The
&&DSN&N combination first resolves to a
macro variable (&DSN5) which then resolves to
a value (FRED) in a second pass.

DATA DEFINED MACRO VARIABLES
It is not unusual to have a set of operations that
must be performed on a series of data sets,
variables, or procedures. The control of this
process can easily be maintained by using
&&var&i operations.

In the following example PROC FSEDIT is to
be run on each of a series of data sets. The
names of the data sets are stored in a flat file
named PAGES.TXT a portion of which looks
like:

012_015
016_017
018

These data set names are placed into macro
variables using the CALL SYMPUT routine in a
DATA _NULL_ step.

* Load the names of the data sets;
data _null_;
length ii $2;

input @1 dsn $8.;
i+1;
ii = left(put(i,2.));
call symput('n',ii);
call symput('dsn'||ii,left(dsn));

run;

The character variable ii assigns a sequential
number to each data set name. This number then
becomes a part of the macro variable name. In
this way &DSN2 is assigned the value of
016_017 . The total number of entries is also
retained in &N.

USING && MACRO VARIABLES
Typically the macro variables created in
applications such as in the above example will be
addressed in the form of &&VAR&I where
VAR is the root portion of the variable name and
the index number is an integer counter.

A macro DO loop is often used to process each
of the macro variables. The code below
executes a PROC FSEDIT for each data set
listed in the text file in the previous example.
Notice that the loop counts from 1 to &N, the
total number of entries. This means that if the
list changes all we have to modify is the list
itself.

%do q = 1 %to &n;
 PROC FSEDIT DATA=dedata.p&&dsn&q mod
 SCREEN=GLSCN.descn.p&&dsn&q...SCREEN;
 RUN;
%end;

Notice that three periods are required in the
SCREEN= option because two passes are
needed to resolve the &&DSN&Q. The first pass
compresses the three periods to two and the
second pass compress the two periods to one.
For &Q=2 this code resolves to:

 PROC FSEDIT DATA=dedata.p016_017 mod
 SCREEN=GLSCN.descn.p016_017.SCREEN;
 RUN;

3

DYNAMICALLY BUILDING SAS CODE
Often code must be written to be flexible in
regard to what data sets or even how many data * count the number of keyvars

sets are to be used. Macro variables can be used
to construct code that is independent of this
knowledge prior to execution. In the following
example the SET statement is constructed from
macro variables.

DATA ALL;
SET
%DO I = 1 %TO &N;
 DEDATA.P&&DSN&I
%END;
;

Using the data set names from above this code
resolves to:

DATA ALL;
SET
 DEDATA.P012_015
 DEDATA.P016_017
 DEDATA.P018
;

The following example assumes that we want to
process each of the data sets in the list using a
BY statement. This is fairly easy unless the BY
variables differ for each data set. The macro
%KEYFLD creates the globalized macro
variable &KEYFLD which contains the key
variables for the designated data set. The macro
argument will be one of the data set names.

%global keyfld;
%macro keyfld(pggrp);
 %if &pggrp = 012_015 %then
 %let keyfld = subject dgtyp;
 %else %if &pggrp = 016_017 %then
 %let keyfld = subject sess occ1;
 %else %if &pggrp = 018 %then
 %let keyfld = subject aepga_;
%mend keyfld;

The call for this macro will be
%KEYFLD(&&DSN&I). The macro variable
&KEYFLD can then be used or dissected as
needed. In the code below the number of
variables in &KEYFLD are counted and the right
most is used in FIRST. and LAST. processing.
In the example below each data set has no more
than 6 key variables.

*determine the list of key vars;
%keyfld(&&dsn&i)
data _null_;

* save each for later;
str="&keyfld";
do I = 1 to 6;
 key = scan(str,i,' ');
 if key ne ' ' then do;
 ii=left(put(i,1.));
 call symput('key'||ii,
 trim(left(key)));
 call symput('keycnt',ii);
 end;
end;
run;

The macro variable &KEY2 contains the name of
the second variable in the list of BY variables
and &KEYCNT stores the number of BY
variables for this data set. These key fields are
used in the following DATA step which checks
for duplicate observations in the selected data set
and assigns a 1 to &DUPP when they are found.

* Make sure that there are no
* duplicate keys;
%let dupp = 0;
data dupp; set dedata.p&&dsn&i;
by &keyfld;
* determine if this is a dup obs;
if not (first.&&key&keycnt and
 last.&&key&keycnt);
call symput('dupp','1');
run;

The above code will locate duplicate
observations using the FIRST. and LAST.
options even though the programmer had no
idea what the variables in the BY statement
would be or even what the last variable in the list
would be when the code was written. In the
above example for &pggrp = 016_017 the
string FIRST.&&KEY&KEYCNT resolves to
FIRST.OCC1. Since there are three variables
in the BY statement, &KEYCNT is 3, and &KEY3
is OCC1.

BUILDING FROM A SAS DATA SET
Often the information needed to construct the
macro variables is contained in an existing SAS
data set. The process of building the macro
variables based on a SAS data set is similar to

4

that used with a flat file. that can be based on SAS data sets or flat files.

The following example produces a plot for each dynamically at the execution of the SAS
region with the region name in the title. A program.
similar result could be achieved using the BY
statement and the #BYVAR option, but this
method provides more flexibility.

%MACRO PLOTIT;
PROC SORT DATA=CLINICS;
BY REGION;
RUN; like to thank Paragon Biomedical, Inc. in Irvine,
DATA _NULL_;
SET CLINICS;
BY REGION;
IF FIRST.REGION THEN DO;
 I+1;
 II=LEFT(PUT(I,2.));
 CALL SYMPUT('REG'||II,REGION);
 CALL SYMPUT('TOTAL',II);
END;
RUN;
%DO I=1 %TO &TOTAL;
 PROC PLOT DATA=CLINICS;
 PLOT HEIGHT * WEIGHT;
 WHERE REGION="&®&I";
 TITLE1
 "Height/Weight for REGION &®&I";
RUN;
%END;
%MEND PLOTIT;

The macro variable ®2 will contain the
value associated with the second region in the
list of regions. The WHERE statement is then
used to subset the data in the PROC PLOT step.
This code is independent of the number of
regions or the values that they take on. The
&®&i can also be used in ANNOTATE
labels.

SUMMARY
SAS macros provide powerful and flexible
coding opportunities for the generalization of
programs. Since macro variables can be used to
pass information between program steps or even
into SAS/AF or SAS/FSP , they provide an® ®

excellent vehicle to store lists of data set or
variable names. These lists are then accessed by
using the double ampersand, &&.

Through the use of && macro variables it is
possible to establish a set of symbolic references

These in turn can be used to write SAS code

ACKNOWLEDGMENTS
Several of the examples used in this paper are
based on code that was developed for use in a
series of clinical trials studies. The author would

CA for permission to use this code.

ABOUT THE AUTHOR
Art Carpenter’s publications list
includes the book Quick Results with
SAS/GRAPH Software, two chapters in®

Reporting from the Field, and over two
dozen papers and posters presented at SUGI and
WUSS. Art has served as a steering committee
chairperson of both the Southern California SAS
User's Group, SoCalSUG, and the San Diego
SAS Users Group, SANDS; a conference
cochair of the Western Users of SAS Software
regional conference, WUSS; and Section Chair
at the SAS User’s Group International
conference, SUGI.

AUTHOR CONTACT
Art Carpenter
California Occidental Consultants
P.O. Box 6199
Oceanside, CA 92058-6199
(619) 945-0613
72212.211@compuserve.com

SAS, SAS/GRAPH, SAS/AF, and SAS/FSP are
registered trademarks of SAS Institute Inc. of
Cary, NC.

	Main TOC

